Cubic Equation Solver

Cubic Equation Calculator
x3 + bx2 + cx + d
b =

c =

d =


Root 1   =  

Root 2   =  

Root 3   =  

Polynomial equations in the form

Ax3 + Bx2 + Cx + D = 0

are called cubic equations. If the coefficient A is not equal to zero, then you can divide both sides of the equation by A and simplify the equation to

x3 + bx2 + cx + d = 0.

If a cubic equation has coeffiecients that are real numbers, then it has three roots, at least one of which is a real number. The other two roots may be a repeated real root, or a pair of complex conjugates. In every case, the values of the roots can be determined by the coeffiecients of the polynomial. The formula that gives the roots in terms of the coefficients is called the Cubic Formula. It is similar the the Quadratic Formula for quadratic equations, except that it is much more complicated. You can find the explicit formulas here, or use the cubic equation calculator on the left.



Here are examples of cubic equations with real, repeated, and complex roots:

x3 - 6x2 + 11x - 6 = 0; solutions: x = 1, 2, 3

x3 + x2 - 16x + 20 = 0; solutions: x = -5, 2, 2

x3 + 6x2 + 12x + 8 = 0; solutions: x = -2, -2, -2

x3 - 6x2 + 10x - 8 = 0; solutions: x = 4, 1 + i, 1 - i

x3 + 9x2 + 9x + 81 = 0; solutions: x = -9, 3i, -3i




© Had2Know 2010

Volume, Surface Area, and Diagonal of a Rectangular Box

How to Calculate the Intersection of Two Lines

How to Calculate the Area, Perimeter, or Diagonal of a Rectangle

Surface Area and Volume of a Torus

Other Polynomial Solvers:

How to Solve Quadratic Equations

Quartic Equation Solver & Quartic Formula

Quintic Equation Solver